148 research outputs found

    Navier-Stokes Equations with First Order Boundary Conditions

    Get PDF
    Abstract.: On the basis of semigroup and interpolation-extrapolation techniques we derive existence and uniqueness results for the Navier-Stokes equations. In contrast to many other papers devoted to this topic, we do not complement these equations with the classical Dirichlet (no-slip) condition, but instead consider stress-free or slip boundary conditions. We also study various regularity properties of the solutions obtained and provide conditions for global existenc

    Adaptive video delivery using semantics

    Get PDF
    The diffusion of network appliances such as cellular phones, personal digital assistants and hand-held computers has created the need to personalize the way media content is delivered to the end user. Moreover, recent devices, such as digital radio receivers with graphics displays, and new applications, such as intelligent visual surveillance, require novel forms of video analysis for content adaptation and summarization. To cope with these challenges, we propose an automatic method for the extraction of semantics from video, and we present a framework that exploits these semantics in order to provide adaptive video delivery. First, an algorithm that relies on motion information to extract multiple semantic video objects is proposed. The algorithm operates in two stages. In the first stage, a statistical change detector produces the segmentation of moving objects from the background. This process is robust with regard to camera noise and does not need manual tuning along a sequence or for different sequences. In the second stage, feedbacks between an object partition and a region partition are used to track individual objects along the frames. These interactions allow us to cope with multiple, deformable objects, occlusions, splitting, appearance and disappearance of objects, and complex motion. Subsequently, semantics are used to prioritize visual data in order to improve the performance of adaptive video delivery. The idea behind this approach is to organize the content so that a particular network or device does not inhibit the main content message. Specifically, we propose two new video adaptation strategies. The first strategy combines semantic analysis with a traditional frame-based video encoder. Background simplifications resulting from this approach do not penalize overall quality at low bitrates. The second strategy uses metadata to efficiently encode the main content message. The metadata-based representation of object's shape and motion suffices to convey the meaning and action of a scene when the objects are familiar. The impact of different video adaptation strategies is then quantified with subjective experiments. We ask a panel of human observers to rate the quality of adapted video sequences on a normalized scale. From these results, we further derive an objective quality metric, the semantic peak signal-to-noise ratio (SPSNR), that accounts for different image areas and for their relevance to the observer in order to reflect the focus of attention of the human visual system. At last, we determine the adaptation strategy that provides maximum value for the end user by maximizing the SPSNR for given client resources at the time of delivery. By combining semantic video analysis and adaptive delivery, the solution presented in this dissertation permits the distribution of video in complex media environments and supports a large variety of content-based applications

    MPEG-7 Description of Generic Video Objects for Scene Reconstruction

    Get PDF
    ABSTRACT We present an MPEG-7 compliant description of generic video sequences aiming at their scalable transmission and reconstruction. The proposed method allows efficient and flexible video coding while keeping the advantages of textual descriptions in database applications. Visual objects are described in terms of their shape, color, texture and motion; these features can be extracted automatically and are sufficient in a wide range of applications. To permit partial sequence reconstruction, at least one simple qualitative as well as a quantitative descriptor is provided for each feature. In addition, we propose a structure for the organization of the descriptors into objects and scenes and some possible applications for our method. Experimental results obtained with news and video surveillance sequences validate our method and highlight its main features

    Risk factors for polyoma virus nephropathy

    Get PDF
    Background. Polyoma virus-associated nephropathy (PVN) is a common cause of renal transplant failure. The risk factors for the development of PVN have not yet been studied in large cohorts of patients for periods of 20 years. Methods. We collected clinical, renal biopsy and urinary cytology data from all patients with renal transplantations performed at the University Hospital of Basel from 1985 to 2005. All patients with a renal biopsy and urine cytology were included (n = 880). Renal transplants were divided into three groups, according to evidence of polyoma virus (PV) infection (decoy cells in the urine) and biopsy-proven PVN: Renal transplants without evidence of a PV infection (n = 751). Renal transplants with PV reactivation, e.g. decoy cell (DC) found by urinary cytology, but without PVN (n = 90). Renal transplants with PVN (n = 39). Results. The prevalence of biopsy-proven PVN in this cohort of patients was 3.3%. Immunosuppression with mycophenolate and/or tacrolimus, ATGAM, male gender of the recipient and a higher number of transplant rejection episodes were factors significantly associated with PVN development. Conclusions. The most important risk factors for the development of PVN are acute rejection and ATGAM used as induction therapy as well as tacrolimus and mycophenolate as maintenance therapy. Therefore, we conclude that patients with tacrolimus and mycophenolate maintenance therapy should be carefully monitored for the development of PV

    Silent recovery of native kidney function after transplantation in a patient with membranous nephropathy

    Get PDF
    Recurrence of membranous nephropathy (MN) is frequently seen after transplantation. However, there are no published data about the course of MN in the native kidneys after transplantation. Disease progression in almost all cases is assumed to be the ‘natural' course after transplantation. We report on a patient suffering from end-stage renal disease due to MN. Eight years after transplantation, nephrectomy was performed due to chronic rejection and unexpectedly, partial recovery of native kidney function was noted. As far as we know, there is no other similar case reported in the literature. The potential impact of the immunosuppression, especially of calcineurin inhibitors, is discusse

    Low Power Wide Area Networks fĂŒr das GebĂ€ude

    Get PDF
    Low Power Wide Area Networks (LPWAN) sind Netzwerke, die vom Stromnetz unabhÀngig drahtlos Sensoren im Internet der Dinge vernetzen. Sie eröffnen auch im und um das GebÀude zahlreiche neue Einsatzmöglichkeiten, da sie in vielen FÀllen die Erfassung von ZustÀnden vereinfachen

    Polymer architecture as key to unprecedented high-resolution 3D-printing performance : the case of biodegradable hexa-functional telechelic urethane-based poly-Δ-caprolactone

    Get PDF
    Two-photon polymerization (2PP) is a high-resolution 3D-printing technology with a very rapidly expanding field of applications, including tissue engineering (TE). In this field, 2PP offers unprecedented possibilities for systematic studies of both cell–cell and cell–material interactions in 3D. For TE applications, the reliable production of biodegradable micro-scaffolds in porous, complex architectures is essential. However, the number of biodegradable materials that support the required level of spatial resolution is very limited, being a major bottleneck for the use of 2PP in the TE field. Herein, we introduce a hexa-functional urethane-based biodegradable precursor that overcomes the limitations associated with the high-resolution printing of current biodegradable precursors. The precursor is a telechelic urethane-based poly-Δ-caprolactone (PCL) possessing three acrylate functionalities at each polymer end group which enables the reliable production of complex architectures owing to its superior physical properties as compared to the traditional di-acrylate terminated analogs. The newly developed hexa-functional telechelic urethane-based PCL reveals enhanced crosslinking kinetics and one order of magnitude higher Young’s modulus compared to the di-functional precursor (57.8 versus 6.3 MPa), providing an efficient and solvent-free 2PP processing at fast scanning speeds of up to 100 mm s−1 with unprecedented feature resolutions (143 ± 18 nm at 100 mm s−1 scanning speed). The crosslinked hexa-functional polymer combines strength and flexibility owing to the segregation between its hard polyacrylate and soft PCL segments, which makes it suitable for biological systems in contrast to the highly crosslinked and rigid structures typically manufactured by 2PP. Furthermore, it revealed lower degradation rate compared to its di-functional analog, which can be considered as an advantage in terms of biocompatibility due to the slower formation of acidic degradation products. Extracts of the developed polymers did not show a cytotoxic effect on the L929 fibroblasts as confirmed via ISO 10993-5 standard protocol. The presented precursor design constitutes a simple and effective approach that can be easily translated towards other biodegradable polymers for the manufacturing of biodegradable constructs with nano-scale precision, offering for the first time to use the true capabilities of 2PP for TE applications with the use of synthetic biodegradable polymers

    Réponse du peuplier noir (Populus nigra L.) aux contraintes hydrogéomorphologiques : une expérimentation ex situ semi contrÎlée

    Get PDF
    International audienceBased on the hypothesis of an eco-evolutionary feedback between woody riparian species and fluvial geomorphology, a semi-controlled ex situ experiment has been planned to quantify key response functional traits (morphological and biomechanical) of Populus nigra L. cuttings to simulated hydrogeomorphological constraints, as well as to dissociate the specific responses to them. The constraints tested are sediment burial and drag force exerted by floods. The characteristics of the experiment are presented as well as the experimental design. The hypothesis of a positive niche construction by P. nigra is tested to a certain degree. The results from this research will improve our understanding of riparian ecosystem functioning and specifically of the role of this key woody pioneer species within active floodplain rivers.BasĂ© sur l’hypothĂšse d’existence d'une rĂ©troaction Ă©co-Ă©volutive entre les espĂšces vĂ©gĂ©tales riveraines ligneuses et la gĂ©omorphologie fluviale, une expĂ©rimentation ex situ en conditions semi-contrĂŽlĂ©es a Ă©tĂ© planifiĂ©e afin de quantifier les traits de rĂ©ponses fonctionnels (morphologique et biomĂ©canique) de boutures de Populus nigra L. soumises Ă  des contraintes hydrogĂ©omorphologiques simulĂ©es : l’enfouissement sĂ©dimentaire, la force de traĂźnĂ©e, et la combinaison des deux contraintes. Les questions scientifiques et le protocole expĂ©rimental sont prĂ©sentĂ©s ici. L’hypothĂšse d’une construction de niche positive de P. nigra est testĂ©e Ă  un certain degrĂ©. Les rĂ©sultats de cette recherche contribueront Ă  amĂ©liorer notre comprĂ©hension du fonctionnement des Ă©cosystĂšmes riverains et plus particuliĂšrement du rĂŽle de cette espĂšce ligneuse pionniĂšre clĂ© au sein de la bande active des cours d’eau

    MKID Exoplanet Camera for Subaru SCExAO

    Get PDF
    We present the MKID Exoplanet Camera (MEC), a z through J band (800–1400 nm) integral field spectrograph located behind The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) at the Subaru Telescope on Maunakea that utilizes Microwave Kinetic Inductance Detectors (MKIDs) as the enabling technology for high contrast imaging. MEC is the first permanently deployed near-infrared MKID instrument and is designed to operate both as an IFU, and as a focal plane wavefront sensor in a multi-kHz feedback loop with SCExAO. The read noise free, fast time domain information attainable by MKIDs allows for the direct probing of fast speckle fluctuations that currently limit the performance of most high contrast imaging systems on the ground and will help MEC achieve its ultimate goal of reaching contrasts of 10⁻⁷ at 2 λ/D. Here we outline the instrument details of MEC including the hardware, firmware, and data reduction and analysis pipeline. We then discuss MEC's current on-sky performance and end with future upgrades and plans

    The MKID Exoplanet Camera for Subaru SCExAO

    Get PDF
    We present the MKID Exoplanet Camera (MEC), a z through J band (800 - 1400 nm) integral field spectrograph located behind The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) at the Subaru Telescope on Maunakea that utilizes Microwave Kinetic Inductance Detectors (MKIDs) as the enabling technology for high contrast imaging. MEC is the first permanently deployed near-infrared MKID instrument and is designed to operate both as an IFU, and as a focal plane wavefront sensor in a multi-kHz feedback loop with SCExAO. The read noise free, fast time domain information attainable by MKIDs allows for the direct probing of fast speckle fluctuations that currently limit the performance of most high contrast imaging systems on the ground and will help MEC achieve its ultimate goal of reaching contrasts of 10−710^{-7} at 2λ/D\lambda / D. Here we outline the instrument details of MEC including the hardware, firmware, and data reduction and analysis pipeline. We then discuss MEC's current on-sky performance and end with future upgrades and plans.Comment: To be published in Publications of the Astronomical Society of the Pacifi
    • 

    corecore